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Novel types of factorisable systems of differential equations 
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Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, 
USA 

Received 10 February 1986, in final form 30 July 1986 

Abstract. This paper considers systems of factorisable equations for different forms of 
the factorisation kernel K ( x ,  m), In one dimension some of these kernels lead only to 
trivial factorisable equations. However, in higher dimensions they yield some novel classes 
of factonsable equations. A partial explicit classification of these new factorisable systems 
is given. 

1. Introduction 

In a recent article [ 13 we considered the generalisation of the classical factorisation 
method [2,3]  to systems of second-order differential equations of the form 

y"+ R(x ,  m ) y +  Ay = 0 ( 1 . 1 )  

where Y E  R" and R ( x ,  m )  is an n x n matrix. 
To factorise these systems one introduces the raising and lowering operators 

H: = K (x, m + 1 )  -A 1 
dx 

(1 .3 )  
d 

dx 
Hi = K ( x ,  m) + - Z 

where K ( x ,  m )  is a n x n matrix, Z is the n x n identity matrix and L ( m )  is a scalar 
function. 

To classify those systems which admit such a factorisation we considered in [ l ]  
(following the treatment of the scalar case in [2]) three forms for K ( x ,  m) and derived 
the equations which must be satisfied by them. These equations are 

(1) K = K o ( x )  + m K , ( x )  

K ;  + K :  = -a2Z ( 1 . 6 ~ )  

U Z O  

a=O 
2KA+{K0, K,}= 

where {A, E} = AB + EA. 

(1.6b) 
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( 2 )  K = K , ( x ) / m + K o ( x ) + m K l ( x )  

K : =  y l I  (1.7a) 

K ; + ( K 2 ,  KO1 = Y 2 I  (1.7b) 

2KA+{Kl, KO) = Y J  ( 1 . 7 ~ )  

2Ki  t K :  = -a21. (1.7d) 

( 3 )  K = K o ( x ) + m K l ( x ) + m 2 K 2 ( x )  

K i =  y l I  (1.8a) 

2K5+3{Kl,  K2)=y2I (1.86) 

K : t { K o ,  K Z } + K : =  y31 (1.8c) 

2K&-4{K,,  K z ) + { K o ,  K d =  Y J .  (1.8d) 

The solution of these equations for K ( y ,  m )  then yields the follow.ing formulae for 
R ( x ,  m) and L ( m ) :  

R ( x ,  m ) = - [ K 2 ( x ,  m ) - K ‘ ( x ,  m ) + L ( m ) I ]  

[ L ( m )  - L ( m  + l)]I = K 2 ( x ,  m + 1)  - K 2 ( x ,  m) + K ’ ( x ,  m + 1 ) +  K ’ ( x ,  m). 

In the scalar case ( n  = 1) it is easy to show that the system (1.8) has no non-trivial 
solutions, i.e. the only solutions are with K 2 ,  K 1 ,  KO being constants and the system 
(1.7) has a non-trivial solution only when Ko=O. 

In [ 11 we therefore solved, in two dimensions, equation (1.6) in general and equation 
(1.7) for the special case Ko=O. We also showed (through examples), however, that 
the systems (1.7) and ( 1 . 8 )  have, for n > 1 ,  non-trivial solutions that have no one- 
dimensional ‘analogue’. 

It is, therefore, our main objective in this paper to make a systematic study of these 
systems and give a fairly complete account of the solutions to (1.7) and (1 .8)  and some 
of the corresponding factorisable systems in two or more dimensions. 

It turns out, however, that the systems (1.7) and (1 .8)  require a rather different 
treatment for the two cases y1 # 0 and y1 = 0. Accordingly we discuss these two cases 
in §§ 2 and 3, respectively. In § 4 we compute explicitly a few of the factorisable 
systems which are related to the solutions found in § §  2 and 3. 

As to the physical motivation for this study we wish to point out that recently the 
factorisation method was used to study supersymmetric models in quantum mechanics 
and elementary particles physics [4, 51. Furthermore some recent generalisations of 
the factorisation method (in one dimension) proved to have new and interesting 
applications in atomic physics [6,7]. Also, coupled systems of Schrodinger equations 
appear in the study of atomic systems and their interactions [B]. 

Thus although this paper does not present any explicit physical applications it is 
our hope that the factorisable systems derived here will ultimately contribute to the 
analytic study of some physical models. The classification of factorisable systems in 
several dimensions, especially those which have no one-dimensional analogues might 
be particularly useful in providing insights to physical systems which are generic to 
these higher dimensions. 
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2. Factorisations with y ,  # 0 

Lemma 1. For the system (1.7), if y1 # 0 then K 2  is a matrix with constant entries. 

Pro05 Multiplying (1.7b) from the left and right by K 2  and adding the results we 
obtain (using ( 1 . 7 ~ ) )  

( K  ;K2 + K2 K i )  + 2 K2 KOK, + 271 KO= 2y2K2. (2.1) 

However, since (1.7a) implies that K ; K 2 +  K ; K 2  = 0 we obtain, after multiplying (2.1) 
by K ,  on the right and using (1.7a), that 

{KO, K2I = YZI-  (2 .2)  

Subtracting (2.2) from (1.7b) we obtain K ;  = 0 which is the required result. 

Lemma 2. For the system (1.8), if y 1  # 0 then K ,  is a matrix with constant entries. 

h o o t  This result follows from the same steps of lemma 1 using equations ( 1 . 8 ~ )  and 
(1.8b). 

We note, however, that even if K 2  is a constant matrix it is not obvious that the systems 
(1.7) and (1.8) cannot yield non-trivial factorisable systems (i.e. K1 or KO are non- 
constant matrices), In fact, we already showed in [ l ]  that if K 2  is a constant matrix 
and KO = 0 we still obtain non-trivial factorisations through the system (1.7). For the 
rest of this section we investigate, therefore, the existence of non-trivial solutions for 
the systems (1.7) and (1.8) when y1 # 0. 

Lemma 3. If KO, K , ,  K 2  form a solution of (1.7) (or (1.8)) then Ki = E-'K,E, i = 0, 1 , 2  
(where E is a matrix with constant entries) is also a solution of this equation. 

Pro05 This is obvious. 

We now observe that a matrix K which satisfies 

K 2 =  y l  

is similar to a matrix of the form 
(2.3) 

where I ,  is the identity matrix in m dimensions. In fact, if M is the canonical Jordan 
form of K then (2.3) implies that M 2  = yZ from which it is easy to infer the desired result. 

In view of lemma 3 and the discussion above we now have the following corollary. 

Corollary. If y1 # 0 then it is enough to solve (1.7) (or (1 .8) )  for K 2  in the form given 
by (2.4). 

In fact any other solution will have to be similar to the general solution of the system 
which uses Z,,," as K 2 .  

Theorem 1. If y1 # 0 then the only solution to the system ( 1 . 8 )  is the trivial solution 
where KO, K l ,  K 2  are matrices with constant entries. 
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Proof: Using I,,," as K 2  we first write K O ,  K, in the corresponding block form 

A B  R S  
K 1 = ( C  D) Ko'(P Q)' 

From (1.8 6)  we now infer 

A =  - D =  al. 

Moreover, from ( 1 . 8 ~ )  we obtain 
B'=  C'=O 

and 

2R + a 21, + BC = y3Zm 

-2Q + a21, + CB = ~3 I,. 

Hence B, C, R, Q are matrices with constant entries. Finally ( 1 . 8 d )  yields 

S' + RB + BQ = 0 

P'+ QC+ CR =O. 

Substituting for R, Q in (2.10) and (2.11) from (2.8) and (2.9) we obtain 
S' = p' = 0 

which completes the proof of this theorem. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

As to the system (1.7) we already remarked that this system has a non-trivial solution 
with KO = 0. It is, therefore, of interest to determine under what conditions this system 
has a solution with KO # 0. While our first result in this direction is in n dimensions 
we consider for the rest of the discussion the system (1 .7)  in two dimensions only. 

Lemma 4. If y, # 0, y2 # 0 and K 2  is similar to Zm,o then the only solution of (1.7) is 
the trivial solution. 

Proof: From (1.76) we infer that KO is a multiple of the identity matrix and hence 
from ( 1 . 7 ~ )  that K, a matrix with constant entries which proves our statement. 

Theorem 2. In two dimensions if y, # 0, y2 # 0 and K 2  is similar to 11,, then the only 
solution of (1.7) is the trivial one. 

Proof: Letting K,, KO be as in (2.5) (where the entires are numbers) we obtain from 
(1.7b) 

R = - Q - '  - 2Y2.  (2.13) 

Furthermore, from ( 1 . 7 ~ )  we obtain 

2S'+ ( A +  D)S  = 0 2P'+(A+ D)P=O (2.14) 

y ,A+CS+BP=y3 -y*D + PB + CS = 73. (2.15) 

From (2.15) it follows that A+ D = 0 and hence S'= P ' =  0, i.e. S, P are constants. 
Furthermore, using the fact that A + D = 0 it is easy to see from (1.7d) that B, C, A - D 
are also constants which complete the proof. 
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Theorem 3. In two dimensions if y1 #O, y 2 = 0 ,  y 3 # 0  then the only solution of the 
system (1.7) is the trivial solution. 

Proof. The proof follows essentially the same steps as in theorem 2 and will be omitted 
here. 

Theorem 4. In two dimensions if y1 # 0, y 2  # 0, y3  = 0 and K2 is similar to IlSl  then 
there exists a non-trivial solution of (1.7) with KO # 0. 

Prooj From (1.7b) it follows that R = Q = 0 and from (1 .7~)  we obtain equation (2.14) 
and 

B P + C S = O .  (2.16) 

Hence 

S = d2J1l2 P = d3J1’2 (2.17) 

where J =  exp( - I ( A + D )  dx). Furthermore, from (1.7d) we infer that 

A - D = C I J  B = c ~ J  C = c3 J. (2.18) 

Hence the condition (2.16) is equivalent to 

~2d3 + c3d2 = 0 (2.19) 

and this is the only constraint on the elements of KO, K1. 
Thus, the general solution of (1.7) under the conditions of theorem 4 is 

and where K1 is the general solution of (1.7d) (which was discussed in [ l ] )  subject 
to the condition (2.19). 

3. Factorisations with y ,  = O  

Our major objective for the rest of this paper is to show the existence of non-trivial 
solutions to the systems (1.7) and (1.8) when y1 = 0. However, since the differential 
equations obtained for the matrix elements of Ki for n > 2  are rather intractable we 
shall consider only the two-dimensional case. 

To begin with we observe that the general form of K2 which satisfy the condition 
K:=O is 

This can be rewritten, however, as 
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Lemma 5. For the systems (1.7) and (1.8) if y1 = 0 then p ( x )  is a constant. 

Prooj From (1 .7b)  we obtain the following differential equations: 

q’ + q( R + Q )  = 0 

( P 2 d ’ + P 2 4 ( R  + 0) = 0 
i( pq)’ + q(2ipR + p 2 P  + S )  = y2 

-i( p q ) ‘ +  q(-2ipQ + p 2 p +  S )  = y 2 .  

Subtracting (3 .6)  from (3.5) we obtain 

( p q ) ’ + p q ( R  + 0) = 0. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3 .7)  

Hence 

Pq = c1 J1 P24 = C2Jl (3.8) 

where J, = exp( -j ( R  + Q) dx). Since q # 0 (otherwise K 2  = 0) it follows that p is a 
constant. The proof of our statement for the system (1.8) is similar. 

Corollary. If y1 = 0 then K 2  is similar to 

Proof: Since p is a constant we infer from the Jordan canonical form theorem that 

B = E-‘AE 

where E is a matrix with constant entries. 

In view of this corollary and lemma 3 we can consider only those K ,  in the form given 
by equation (3 .9) .  

Proposirion 1. The system (1.7) in two dimensions admits non-trivial solutions with 
y , = y 2 = O a n d  Ko#O. 

Prooj Since we assume that q ( x )  # 0 it follows from (1 .76)  that S = 0 and 

q ’ + ( R + Q ) q = O .  (3.10) 

Moreover, we deduce from ( 1 . 7 4  that B( R + Q )  = 0. Hence, either B = 0 or R + Q = 0. 
When B = O  we obtain from ( 1 . 7 ~ )  and (1 .7d)  the following equations for the matrix 
elements of K , ,  KO: 

A ~ + A ~ = - ~ ~  D ’ + D * = - ~ ~  

R ’ + A R = + Y ,  Q‘+DQ=4y3 

C ’ +  C ( A +  D )  = 0 

(3 .11)  

(3.12) 

(3.13) 

2 P ’ + ( A + D ) P + C ( R + Q ) = O .  (3.14) 

These equations are consistent and independent of any additional constraint. 
Moreover, it is easy to solve this system in the order indicated above. In the second 
case where R + Q = 0, B # 0 we must require for consistency A = D and P = y 3  = 0. 
The differential equations which must be satisfied by A, B, R in this case are given by 
equation (4.5).  
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Proposition 2. The system (1.8) is two dimensions has non-trivial solutions with y ,  = 
y2  = 0 and K 2  # 0. 

We omit the proof (which is similar to the one above) but note that such a non-trivial 
solution is obtained under the present assumptions when S = B = 0 and the remaining 
elements of KO, K ,  , K 2  satisfy the following equations: 

A ‘ + A ~ =  y 3  D’+D’= y3 

R’+AR = y4 Q‘+DQ= ~4 

(3.15) 

(3.16) 

C’+ C ( A +  D ) =  -A(R + 0) (3.17) 

2q’+3q(A+ D )  = O  (3.18) 

2P’+ P(A + D )  = iq (  A + D )  - C( R + 0). (3.19) 

Once again we note that this is a weakly coupled system whose general solution can 
be easily obtained when solved in the order given above. 

4. Examples of some factorisable systems 

Collecting the results of the previous two sections we compute here explicitly three 
classes of factorisable systems in two dimensions which have no one-dimensional 
analogues. These three classes correspond to those described by theorem 4 and 
propositions 1 and 2. We emphasise, however, that the list compiled here is far from 
being exhaustive. In fact our examples represents only some very special subsets of 
the possible factorisable systems described by these theorems. 

4.1. SF-A 

This class of special factorisable (SF) systems correspond to those described by theorem 
4 (case 1). To satisfy the condition (2.lg) we let c2 = c3 = 0. Furthermore, we set A = D. 
The form of the matrices KO, K ,  is then 

O d  
K1=AZ KO = J1I2( d, b) 

while K 2  is given by (2.3). The equation which A satisfies is 

A’+ A’ = a’ 

(we replace here and in the following -a2 by a’ in (1.7d)) and 

Using the special solution A = a for A we find that the corresponding form of 

(4.1) 
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is 

R I 2 = - a  exp(-ax)[2q2 exp(ax)+d2(2m+1)] 
R,, = - a  exp(-ax)[2q3exp(ax)+d3(2m+1)] 

4.2. SF-B 

Using proposition 1 with s = p = r + q = y3  = 0, A = D we deduce that the general form 
for L( m) and the matrices KO,  K,, K z  is 

L( m )  = -a2m2 (4.4) 
R O  A B  

where b is a constant. The differential equations for A, B, R are 
A’+ A’ = a’ B’+2AB=O 

R ’ + A R  = O  
i.e. 

B = c ~ J  R = d ,  J ” 2 .  
Using A = a as a solution for A we obtain for R(x ,  m) 

R , ,  = -exp(-2ax){d1[(2m+ 1)a exp(ax)+d,]+ bc,} 
R , ,  = -2m(m + l)acz exp(-2ax) 
R,, = -2ab 
R,, = exp(-2ax){d1[(2m + 1)a exp(ax) - d,] - bc,}. 

4.3. SF-C 

To simplify this case further we let 
R O  

K ,  = AI K 2 ‘ ( P  - R )  Kz= q ( x ) A .  

Solving the appropriate differential equations yields 
B = boJ3I2 R = d ,  J1” 
p = d ,  J1/’ -;bo J 3 / 2 .  

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Choosing A = a as a solution for A and L( m) = -a2m2 we obtain for R(x, m) 
R,, = -dl exp(-2ax)[(2m+l)a exp(ax)+d,] 
R I 2  = 0 

R,, =$2(2m+ 1) exp(-3ax)[4d3 exp(2ax)+ bo(2m+3)(2m-l)] 
RZ2 = d ,  exp(-2ax)[(2m + 1)a exp(ax) - d , ] .  

Although this system is separable we note that non-separable systems can be obtained 
using proposition 2 when we let S # 0. 
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